Int.J.Curr.Res.Aca.Rev.2019; 7(5): 1-4



## International Journal of Current Research and Academic Review ISSN: 2347-3215 (Online) Volume 7 Number 5 (May-2019)

Journal homepage: http://www.ijcrar.com



doi: https://doi.org/10.20546/ijcrar.2019.705.001

## **Bio Chemical Analysis of Beejamruth and Its Plant Promoting Factors**

A.S. Goveanthan<sup>1</sup>, M.P. Sugumaran<sup>1\*</sup> and E. Somasundaram<sup>2</sup>

<sup>1</sup>Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India <sup>2</sup>Department of Sustainable Organic Agriculture, Tamil Nadu Agricultural University, Coimbatore, India

\*Corresponding author

#### Abstract

Jeevamruth and Beejamruth have their good role in vegetable foods in organic farming. Beejamruth and Jeevamruth are the fermented products which are used as plant growth enhancing substances prepared by the materials available with the farmers. They are the rich sources of beneficial microbial flora which supports, stimulates the plant growth and helps in getting better vegetative growth and also good quality yield. A survey was made to gather informations on traditional formulations of Jeevamruth among organic farmers and the formulation followed by farmers was used to prepare Jeevamruth in the lab. The prepared formulation was analysed in the GCMS to characterize the traditional formulations. The results revealed that various beneficial compounds were present in the formulations. The compounds present in Beejamruth Mevastatin and Gitoxigenin act as bioconversion repellents. Macrocyclon and 8-heptadecene dioicacid are antimicrobial and used in cryopreservation. Erioflorin and nagilactone A are plant growth regulators. Trimegestone, RofeCoxib are antibiotic in nature. Clupanodonic acid is helpful in plant defense mechanism. Hence, Beejamruth is a valid and effective alternative fertilizer for the production of safe and good quality food produces which could cater the needs of the modern Indian requirements.

### Introduction

Green revolution had intensified agriculture to meet the ever increasing demand for food and fibre, which is a practice at great cost to the environment resulting in continuous loss of natural ecosystems, ground water, food stuff pollution and other environmental degradation. The greatest challenge to be faced by the nation in the coming years is, to provide safe food for the growing population in the country. In this regard, organic farming which is a holistic production management system for promoting and enhancing health of agro ecosystem, has gained wide recognition as a valid alternative to

1

**Article Info** 

Accepted: 04 April 2019 Available Online: 20 May 2019

### Keywords

| Jeevamruth,              | Beejamruth, |  |  |
|--------------------------|-------------|--|--|
| Traditional formulations |             |  |  |

conventional food production and ensures safe food for human consumption. This farming system avoids large use of synthetic fertilizers, growth regulators, livestock feed additives and relies on green manures, crop rotations, crop residues, animal manures, biofertilizers, different kinds of cow based liquid organic manures Panchagavya, Jeevamruth, Beejamruth, such as Amritpani etc. Jeevamruth and Beejamruth has their good role in vegetable foods in organic farming. Beejamruth and Jeevamruth are the fermented products which are used as plant growth enhancing substances prepared by the materials available with the farmers. Which is claimed to be having many plant promoting

compounds and traits that favours microbial growth in the plant rhizosphere (Devakumar *et al.*, 2011).

### **Materials and Methods**

### **Preparation of Beejamruth**

Beejamruth is used for the seed treatment and in this 'Beej' means seed and amruth' is a valuable food. To this experiment, Beejamruth was prepared in the Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore. The materials required and the methodologies involved in the preparation of Beejamruth are furnished below.

| 1 | Cow dung  | 2.5 kg    |
|---|-----------|-----------|
| 2 | Cow urine | 2.5litres |
| 3 | Lime      | 50 grams  |
| 4 | Soil      | 50 grams  |
| 5 | Water     | 50 litres |

The raw materials are mixed and allowed to ferment for 24 hours to get the final product (Palekar, 2006).

### Analysis of Beejamruth in GC-MS

500 ml of liquid sample was taken in a separating funnel (1 liter)

## Ť

150 g of sodium chloride was added and shaken well to get dissolved

### ₽

75 ml of Dichloromethane (DCM) was added and shaken well and the pressure released intermittently (shaken until complete pressure goes up)

### T

Allowed for 10-15 minutes

## L

Decanted the organic layer into a round bottom flask by passing through early down Na<sub>2</sub> SO<sub>4</sub>

## T

Added 50 ml of Dichloromethane (DCM) and shaken well and the pressure released intermittently (shaken until complete pressure goes up)

## T

Allowed for 10-15 minutes

## 1

Decanted the organic layer into a round bottom flask by passing through early down Na<sub>2</sub>SO<sub>4</sub>

## 1

Again 50 ml of Dichloromethane (DCM) was added and shaken well and released the pressure intermittently (shaken until complete pressure goes

# up)

Allowed to stand for 10-15 minutes

## T

Organic layer was decanted in a round bottom flask by passing through early down Na<sub>2</sub>SO<sub>4</sub>

## l

Concentrated the filtrate to drying by using Rotary vacuum evaporator

## T

Added 5 ml of methanol and dried again

## T

2 ml of methanol (HPLC grade) was added and transferred to vial for GC-MS analysis.

### **Results and Discussions**

The results from the experiment on "Biochemical evaluation of organic inputs (Beejamruth) and their efficacy on greens" conducted at the Department of Sustainable Organic Farming, Tamil Nadu Agricultural University, Coimbatore are summarized below (Table 1 and 2).

### **Composition of Beejamruth**

The result of the analysis of Beejamruth showed a pH is 7.51, total organic carbon to be 5.50 %, total nitrogen 5.18 %, total phosphorus 1.30 %, total potassium 1.08%, calcium 4.48% and magnesium 20.8 %. The microbial population has found to be high with bacteria 170 x  $10^6$  CFU/ml, followed by fungi  $3x10^4$  CFU/ml and Actinomycetes 1  $10^2$ CFU/ ml. The nutrients content were found to be higher when compared to the results reported by Devakumar *et al.*, (2014).

## Int.J.Curr.Res.Aca.Rev.2019; 7(5): 1-4

### Table.1 Physio - chemical properties of Beejamruth

| Parameters                            | Values |
|---------------------------------------|--------|
| рН                                    | 7.51   |
| Total Nitrogen (Per cent)             | 5.18   |
| Total Phosphorus (Per cent)           | 1.30   |
| Total Potassium (Per cent)            | 1.08   |
| Total Organic Carbon (Per cent)       | 5.50   |
| Bacteria (x 10 <sup>6</sup> CFU / ml) | 82     |
| Fungi (x $10^4$ CFU / ml)             | 3      |
| Actinomycetes (x $10^2$ CFU / ml)     | 1      |

## Table.2 Biochemical composition of Beejamruth

| S.No | Retention<br>time (min) | Peak<br>area(%) | Molecular<br>formula              | Common name<br>(fatty Acid)             | Activity of compound                    | Nature of compounds |
|------|-------------------------|-----------------|-----------------------------------|-----------------------------------------|-----------------------------------------|---------------------|
| 1    | 30.55                   | 6.73            | $C_{23}H_{34}O_5$                 | Mevastatin, Gitoxigenin                 | Bioconversion, Repellents               | Fatty acid          |
| 2    | 36.29                   | 0.49            | $C_{14}H_{14}O_4$                 | Columbianetin, Lomatin                  | Increase seed longevity                 | Fatty acid          |
| 3    | 36.29                   | 0.49            | $C_{22}H_{26}O_2$                 | Dibutoxyanthracine                      | Pesticide                               | Fatty acid          |
| 4    | 36.29                   | 0.49            | $C_{24}H_{32}O_{6}$               | Prednacinolone                          | Insecticides                            | Fatty acid          |
| 5    | 22.36                   | 0.75            | $C_{14}H_{20}O_4$                 | Ubiquinol, Dupical                      | Antioxidant, reduces reductase activity | Fatty acid          |
| 6    | 23.31                   | 0.95            | $C_{17}H_{30}O_4$                 | Macrocyclon                             | cryopreservation                        | Fatty acid          |
| 7    | 36.70                   | 3.75            | $C_{19}H_{24}O_{6}$               | Erioflorin, Nagilactone A               | Plant growth regulators                 | Fatty acid          |
| 8    | 34.78                   | 11.86           | $C_{22}H_{30}O_3$                 | Trimegestone                            | Antibiotic                              | Fatty acid          |
| 9    | 38.45                   | 2.66            | $C_{17}H_{14}O_4$                 | Rofecoxib                               | Antibiotic                              | Fatty acid          |
| 10   | 38.45                   | 2.66            | $C_{22}H_{34}O_2$                 | Clupanodonic acid                       | Plant defense                           | Fatty acid          |
| 11   | 39.10                   | 2.95            | $C_{22}H_{40}O_4$                 | cyclohexyl dodecyl<br>euceinate         | Plant pesticide                         | Fatty acid          |
| 12   | 30.95                   | 0.51            | $C_{30}H_{50}O_5$                 | Eldecalcifol                            | Insecticide                             | Fatty acid          |
| 13   | 31.28                   | 1.77            | $C_{27}H_{40}O_{6}$               | Petrosaspongiolide m,<br>hyatolide a    | Lipid signaling pathway                 | Fatty acid          |
| 14   | 31.93                   | 3.94            | $C_{15}H_{22}O_{10}$              | Catalpol                                | Plant defense                           | Fatty acid          |
| 15   | 32.22                   | 0.66            | $C_{24}H_{28}O_{7}$               | Garcinone-d                             | Prevention and treatment of diseases    | Fatty acid          |
| 16   | 32.97                   | 4.92            | $C_{27}H_{38}O_4$                 | Subglutinol a                           | Immunosuppressive agent                 | Fatty acid          |
| 17   | 36.09                   | 2.97            | $C_{22}H_{26}O_4$                 | Benzoic acid, 2-ethyl hexanedioldiester | Defense response                        | Fatty acid          |
| 18   | 39.43                   | 1.20            | $C_{26}H_{30}O_{6}$               | Kuraidin, Oxogedunin                    | Insecticide                             | Fatty acid          |
| 19   | 37.78                   | 1.82            | $C_{20}H_{28}$                    | Decylnaphthalene                        | Plant growth regulating compound        | Alkanes             |
| 20   | 32.97                   | 4.92            | $C_{30}H_{22}$                    | P-quinquephenyl                         | Fungicide                               | Alkanes             |
| 21   | 36.29                   | 0.49            | $C_{30}H_{54}$                    | Tetrahydrosqualene                      | Fungicides                              | Alkanes             |
| 22   | 34.44                   | 1.17            | $C_{15}H_{24}O$                   | Farnesal, Isoacolamone                  | Assist in the pollination               | Alconol             |
| 23   | 31.93                   | 3.94            | $C_{15}H_{22}O$                   | Curlone, Ggermacrone                    | Antiviral Activity                      | Alconol             |
| 24   | 36.29                   | 0.49            | C <sub>10</sub> H <sub>18</sub> O | Eucalyptol, Gexanid                     | Insecticide, assist in the pollination  | Alcohols            |
| 25   | 37.78                   | 1.82            | $C_{10}H_{16}O$                   | Camphor                                 | Biopesticide                            | Alcohols            |

The reason may be due to the use of desi cow's urine and dung used in the preparation of the product.

### **Biochemical analysis of Beejamruth**

The biochemical analysis of Beejamruth by GCMS revealed that the following compounds were present

### **Biochemical characteristics of Beejamruth**

Mevastatin and Gitoxigenin present in Beejamruth act as bioconversion repellents. Macrocyclon and 8heptadecene dioicacid are antimicrobial and used in cryopreservation. Erioflorin and nagilactone A are plant growth regulators. Trimegestone, RofeCoxib are antibiotic in nature. Clupanodonic acid is helpful in plant defense mechanism. Cyclohexyl Dodecyl euceinate is a plant pesticide. Catalpol is helpful in plant defense mechanism. Garcinone-Dhelpsin is an antimicrobial agent and protects the plants from diseases. Subglutinol immune suppressive А acts as an agent. Decylnaphthalene is a plant growth regulating compound. P-Ouinquephenyland Tetrahydrosqualene acts as fungicide.

Curlone and Germacrone have antiviral properties. Eucalyptols, Gexanid are with insecticide properties and also assist in pollination. Camphor is a biopesticide. Taraxerone and Arborinone are antimicrobial agents. Farnesal is naturally an antifungal agent (Avis, 2007; Avis and Belanger, 2001). There antimicrobial compounds present in the Beejamruth, enriches the bio protectant value of the compound and when applied in the field will protect the crop from soil borne biotic stresses.

Based on present investigation it was concluded that the composition of Beejamruth is a valid and effective alternative fertilizer for the production of safe and good quality food produces which could cater the needs of the modern Indian requirements.

### References

- Avis, T. J. 2007. Antifungal compounds that target fungal membrane: Application in plant disease control. Can. J. Pl. Path., 29: 323-329
- Avis, T. J. and R. R. Bélanger. 2001. Specificity and mode of action of the antifungal fatty acid cis-9heptadecenoic acid produced by *Pseudozyma flocculosa*. Appl. Environ. Microbiol., 67: 956-960.
- Deva Kumar N., G.G.E. Rao and S. Shuba.2011. Evaluation of locally available media for the growth and development of nitrogen fixing microorganisms. In: Proceedings of the 3rd scientific conference of ISOFAR Organic are life knowledge for tomorrow, held on 28th September-01 October 2011, Korea. PP. 504- 509.
- Deva Kumar, N., S. Shubha, S. B. Gouder and G.G.E. Rao. 2014. Microbial analytical studies of traditional organic preparations Beejamrutha and Jeevamrutha. In: Proceedings of the 4<sup>th</sup> ISOFAR Scientific Conference. 'Building Organic Bridges', at the Organic World Congress. Oct.13-15. PP. 639-642.

### How to cite this article:

Goveanthan, A.S., M.P. Sugumaran and Somasundaram, E. 2019. Bio Chemical Analysis of Beejamruth and Its Plant Promoting Factors. *Int.J.Curr.Res.Aca.Rev.* 7(5), 1-4. **doi:** <u>https://doi.org/10.20546/ijcrar.2019.705.001</u>